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An investigation of the high-field series expansions for the
square lattice Ising model
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Research School of Physical Sciences, Australian National University, Canberra, ACT
2600, Australia

Received 26 July 1979, in final form 16 April 1980

Abstract. We have used high-field series expansions for the square lattice Ising model to
investigate the physical singularity in the magnetisation as a function of the field. High-field
series were obtained to order 35 at temperatures T =~0-5T, and T =~0-766 T using series
expansion techniques based on corner transfer matrices. At neither temperature is there
any evidence of a spinodal line: the behaviour is consistent with the predictions of the
droplet model, suggesting that the first-order transition line is a line of infinitely differenti-
able singularities.

1. Introduction

For many years there has been considerable interest in the question of whether the line
of first-order transitions in a liquid—gas system corresponds to a line of singularities or
whether the properties of one phase can be analytically continued into the two-phase
region. Such an analytic continuation could possibly be regarded as representing a
metastable state. The present study, like most of the previous investigations, is
concerned with the Ising model which can be regarded as a ‘lattice gas’ model of
liquid—gas transitions. The advantages of working with the Ising model are as follows:

(i) It is more tractable than more realistic models.

(ii) The location of the first-order transition line is known.

(iii) Only one phase need be considered because of the symmetry between ‘liquid’
and ‘gas’ phases.

Domb (1976) has reviewed the various attempts to study the analytic behaviour of the
phase boundary in lattice gas models. Some of the main points are as follows:

(i) Approximate solutions such as the mean-field approximation can be analytic-
ally continued into the two-phase region. The continuation is terminated by a spinodal
line along which the susceptibility (using ‘magnetic’ terminology) diverges.

(ii) Essam and Fisher (1963) and Fisher (1967) constructed an approximate
‘mimic’ partition function for which the line of first-order transitions is a line of
singularities.

(iii) Baker (1968) and Gaunt and Baker (1970) have used exact series expansions to
search for singular behaviour along the phase boundary. They did not find any
indication of singularities on the phase boundary, but they did find an apparent line of
singularities inside the two-phase region, as would be expected if properties (i) applied.

T Present address: CSIRO, Atmospheric Phys., PO Box 77 Mordialloc, Vic. 3195, Australia.

0305-4470/80/123723+12801.50 © 1980 The Institute of Physics 3723



3724 I G Enting and R J Baxter

(iv) Domb (1976) has undertaken a detailed analysis of the configurations contri-
buting to the partition function. He suggested that at low temperatures there should be
a line of essential singularities in the two-phase region, while at higher temperatures
there should be a spinodal line (see figure 1).

More recent work using the renormalisation group (Klein ef al 1976, Klein 1980)
has indicated the existence of a line of essential singularities so that the magnetisation
cannot be analytically continued through H = 0. The two treatments differ, however, in
their predictions about the possiblity of analytically continuing M (H) by going around
H =0in the complex H plane. A continuation around H = 0 to negative real H could
still be associated with a metastable state (Klein 1980, Fisher 1967).

The present study is based on high-field expansions for the square lattice Ising
model: we expand about u = exp(—2H/kT) = 0, looking for a singularity at u;= 1. The
coefficients in the series can be determined exactly, using an algebraic technique which
we have described previously in connection with low-temperature series (Baxter and
Enting 1979). These low-temperature series have been used by Baker and Kim (1980)
to expand the magnetisation about Ff =0 so that a line of singularities would be
indicated by a zero radius of convergence. While this latter approach is more direct, it
suffers from the disadvantage that the coefficients of the powers of H are not known
exactly but are obtained by extrapolating our 23-term low-temperature series.

We conclude that the high-field series are consistent with the predictions of the
droplet model rather than indicating the existence of a spinodal.

Section 2 gives some of the relevant technical details concerning the derivation of
the series. Section 3 describes the framework within which the series analysis is carried
out, showing how the series can be used to distinguish between the different possible
types of singularity. Section 4 lists the actual results of these tests, and § 5 indicates the
reasons that lead us to interpret these results as arising from a line of infinitely
differentiable singularities.

2. Series expansions

The Ising model on the square lattice has a series expansion for Z, the partition
function, given by
Z(TLH)
Z{T=0,H =)

), )=y, Comut"u", 2.1)

where u =exp(—4J/kT), u =exp(-2H/kT). The C,,. are integers and are non-zero
only when m/2<n <m?/4. This means that series (2.1) can be grouped either as a
series in u (with coefficients which are polynomials in x) or as a series in u (with
coefficients which are polynomials in u).

Baxter and Enting (1979) obtained the u series to order >’ by using an algebraic
technique based on the corner transfer matrix formalism of Baxter (1976). The reduced
partition function « is obtained from a set of equations involving infinite matrices. If an
appropriate basis is chosen, then series expansions can be obtained by truncating the
matrices at finite size. The technique can also be applied to the u series. Matrices of
dimension 13 x 13 are sufficient to give « through to x*°.

The details of the calculation have been changed in several respects:

(i) The equations used by Baxter and Enting involved several products of three or
more matrices. In the present calculation additional matrices have been defined so that
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all products involve only pairs of matrices. Inother words, quantities which appeared as
temporary intermediate variables in the original formalistn are now preserved rather
than being recalculated at each stage.

(ii) We work with the temperature fixed (i.e. u is fixed). This means that all
calculations involve only series in a single variable. In general, the coefficients
occurring in the series for each matrix element would be ratios of polynomials in u, but
fixing u reduces the coefficients to rational fractions a/b. The fractions are further
simplified by mapping them onto the field of integers modulo p (p prime) via the

mapping

a-4 (£ =x mod p),
b—>5,
a/b->@/B)=a® (¢ (f ® § =% x § mod p),

where b is defined by B HRE=1.

If bounds are available for numerators and denominators of fractions, then the
fractions a/b can be reconstructed from their representatives (&75) so long as the
calculation has been performed for a sufficient number of different primes p. In the
series for k, bounds for the denominators are known because the coefficients are
polynomials in # with known degree and integer coefficients.

We have considered the cases of u=35(T/T,=0-49988...) and u=
16(T/ T, =0-76555 . ..). For a fixed u, the series for x becomes

X0

k(U p)= ZO an (W) "u™, (2.2)
where the coefficients a, (1) are integers. The coefficients a, (3%) and a, (i) are listed in
tables 1 and 2 for n <35. Strictly speaking the coeflicients are only correct modulo p,
where p =11/, pi, pr=2'"—99 and the p; are consecutive primes. The u =33 cal-
culation used 19 primes and the u =75 calculation used 14. Because of the regular
behaviour of the series, we do not believe that any additive multiples of p occur.

The procedure of mapping fractions on to integers was described by Borosch and
Frankael (1966). The inverses (5"1) can be calculated by a modification of Euclid’s
algorithm for the greatest common divisor (Knuth 1969) or less efficiently by using
Fermat’s theorem a” = a (mod p), whence (@Y =a"*modp if a # 0 (mod p).

3. Possible lines of singularities

Domb (1971) has pointed out that any asymptotic analysis of series coefficients must be
based on some assumptions about the possible singularities. For example, most analysis
in the theory of critical phenomena is based on the assumption of dominant power-law
singularities. In investigating the high-field series we must consider a wider class of
singularities. Since widening the class of possible singularities is essentially equivalent
to increasing the number of unknown parameters to be estimated, we will only consider
the possible forms mentioned by Domb (1976).

Essam and Fisher (1963) and Fisher (1967) used the droplet model to construct a
‘mimic’ partition function that had a line of singularities at u = 1.

Baker (1968) and Gaunt and Baker (1970) have used exact series expansions to
search for singularities on the phase boundary. They did not find such a singularity, but
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Table 2. Series for the partition function coefficients a, (), n =0-35, u = %.

18

468

21240

943 065

530 274 78

285 407 937 0

176 577 539 967

109 467 984 956 22

710 975 088 361 098

475 429 473 995 908 86

326 482 311 261 486 079 8

226 988 834 198 112 518 508

162 134 134 442 239 662 161 46

117 116 411 483 659 519 404 880 2

858 316 981 818 542 855 598 251 01

636 877 319 795 551 113 093 358 732 8

478 383 956 096 199 316 560 660 935 970

362 452 519 183 833 873 010 847 241 751 50

277 420 547 030 596 087 390 344 968 516 238 6

213 955 890 010 279 572 544 957 749 948 234 057

166 395 425 217 420 635 209 957 476 466 504 077 66

130 271 926 217 291 999 840 804 816 785 022 589 538 8

102 678 232 464 874 843 783 160 781 682 017 501 729 111

814 113 027 410 309 599 749 493 330 521 577 728 495 321 3

649 277 221 355 085 372 194 984 857 165 111 156 183 886 382

520 511 707 272 744 435 476 159 975 876 150 425 049 567 437 32

419 380 673 443 845 557 884 098 086 071 806 713 302 852 876 140 0

339 456 599 522 982 436 045 451 376 806 765 999 800 927 449 667 758

275 995 655 105 893 439 856 110 896 032 944 953 845 624 735 050 384 46

225 314 949 357 845 101 023 404 887 000 272 598 627 626 535 150 921 339 8
184 673 878 155 672 274 624 400 925 613 419 326 995 634 930 903 896 379 235
151 919 891 991 593 351 053 546 661 951 439 058 237 876 765 149 762 583 309 47
125 419 256 276 075 067 754 182 694 053 661 903 383 096 868 530 604 017 592 293 0
103 887 485 103 041 752 829 746 120 481 699 637 528 029 219 799 764 794 705 889 226

they did locate what seemed to be a spinodal curve. They assumed that this curve
obeyed the scaling equation

n=-DA-T/TY  r=(-w/1+w), A=%

and estimated D,=0:39+0-20. Lines B and B’ on figure 1 show the scaling curve for
D,=0-19 and 0-59 respectively.

Domb (1976) suggested a more complicated behaviour in which the spinodal curve
existed only for larger temperatures, while for very low temperatures there would be a
line of essential singularities beyond the first-order transition line w =1. Line A on
figure 1 shozws the limiting (small u) behaviour of the line predicted by Domb:
us=1-u)".

This suggestion of Domb’s involves representing the asymptotic behaviour of the
series coefficients in terms of four unknown parameters, as indicated below.
Fortunately this parametrisation turns out to be sufficiently general to include all the
other cases that we wish to consider.
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1/34 1/20 1/10 ~
T T T ~
11F D,=019
B
Iy 121
=059
13r
Tl=

Figure 1. Conjectured lines of singularities in the u—u plane of the square lattice Ising
model. Line A is a line of essential singularities. Lines B and B’ are based on Gaunt and
Baker’s estimates of the asymptotic behaviour of the apparent spinodal. The two lines
define the range of possible positions given by their estimates.

We analyse the series in terms of the asymptotic form
b, ~x"/(a""n®), (3.1)
with
M(/,L)=1—2§n:b,,u”. (3.2)

Of the four free parameters, x, a, o and g, x determines the location of the singularity, o
varies only slightly, the possible values all being near 3, and g only becomes important
near the critical point. The particular parameter values for the various possibilities
described above and sketched in figure 1 are as follows:

(i) Droplet model (Essam and Fisher 1963):

x=1 (singularity at uw =1),
a>1, 0<o<l if T<T, (essential singularity),
a-»1 as T->T. (crossover to known critical behaviour),
oc=1s5, g= ¥ near T, (so as to reproduce the known critical exponents).
(ii) Spinodals (T < T,):
x <1 (singularity at u > 1),
(a=1 or o=0) (no essentialsingularity),
g <2 (if susceptibility diverges).
(iii) Displaced essential singularity with intersecting spinodal (Domb 1976):

x<1 (singularity at u <1),
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o=3 (for small u, compact clusters dominate),

1
a->1 as T->T, (crossover to spinodal).

4. Series analysis

As mentioned above, the modified droplet model proposed by Domb involves four
unknown parameters. Even with the long series given in the tables we are not in a
position to make direct estimates of these parameters.

Our main result is that the series seem to be inconsistent with the existence of a
spinodal line. From the previous section it will be seen that a spinodal line places most
restrictions on the possible values of the parameters. The ‘spinodal’ prediction is
sufficiently precise for us to be able to test it directly and, as a result of the tests, to reject
it as a possiblity. The remaining possibilities that have been proposed are lines of
infinitely differentiable singularities. We find that our series are consistent with this
type of behaviour with the singularity being nearry, = 1. Obviously no series analysis
can ever show that the singularity is exactly at . = 1 (the droplet model) rather than at u
slightly greater than 1 (as suggested by Domb).

Our analysis is based on various forms of the ratio method. The reasons for using
the ratio method to the exclusion of other techniques such as Padé approximants are as
follows:

(i) The predictions of the droplet model are given most directly in terms of the
series coefficients, and the ratio method works directly with the series coefficients.

(ii) The use of Padé approximants requires us to transform our function into some
related function which has, at least to a first approximation, a simple pole at the physical
singularity. (For power-law singularities the logarithmic derivative of the thermo-
dynamic function is used.) Without some knowledge of the type of singularity it is not
possible to make an appropriate choice for the transformation.

(iii) While Padé approximants sometimes display a characteristic pattern of poles
and zeros around points which cannot be represented exactly by the approximants, the
interpretation of these patterns is, in general, very much a subjective business. Pade
analysis of the high-field Ising series has so far proved unfruitful (D Kim, private
communication), but it might be hoped that experience with Padé approximants to the
Ising model series might ultimately be a guide to the interpretation of Padé analysis at
other first-order transitions.

We begin by taking the predictions of the (modified) droplet model for the
coeflicients

b,~x"/(a" n®). 4.1)
The ratios of these coefficients are (see table 3)
Fo=bu/by1~x(1—g/n)a™"""", (4.2)

(The spinodal would correspond to a” =1 or r, =x(1—g/n).) The ratios are plotted
against 1/x in figures 2 and 3. The gradient of the ratio plot is predicted to behave as

d
ho=gtizm =

(For a” =1 this reduces to —gx.)

1:;n—aa—am°ma) 4.3)
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Table 3. Ratio method analysis of magnetisation series.

u=1 u=1%
n Fe=bn/b,1 ~lnr, re=b./by_1 =Inr,
8 0-448 96 0-800 82 0:708 96 0:34395
9 0:397 56 0-922 41 0:697 71 0:35995
10 0-407 88 0-896 77 0722 33 032527
11 0-463 20 0-769 59 0:736 14 0-306 33
12 0-476 66 0-74096 0-749 66 0-288 14
13 0:443 65 0-81272 0:-75352 0-283 00
14 0-51323 0-667 02 0-769 72 0:26173
15 0-506 57 0:680 10 0-774 24 0255 88
16 0:507 76 0:67776 0:782 04 0:24585
17 0:52057 065283 0-788 66 0:23742
18 0-546 48 0604 25 0-795 60 0-228 26
19 0-54157 061327 0:79997 0:223 18
20 0-556 61 0-58590 0:80591 0:25179
21 0-554 36 0:58993 0-809 98 0:21074
22 057622 0-55127 0-814 93 0204 65
23 0-577 85 0-548 44 0-818 66 0:20009
24 0-58393 0:53797 0-822 61 0:19527
25 0-58823 0-53063 0-826 06 0:-19109
26 0-597 78 0-514 52 0-829 57 0-186 85
27 0-604 63 0:503 13 0-83224 0-183 15
28 0-609 48 0-495 15 0-835 55 0:179 67
29 0-612 53 0:490 16 0-83844 0-176 21
30 062036 0:477 46 0-84119 0-17293
31 0:62298 0-473 24 0-843 68 0:-169 98
32 0-630 84 0:460 70 0-846 16 0-167 05
33 0-63374 045611 0-848 44 0-164 36
34 0-638 06 0-449 33 0:850 66 016174
35 0-64219 0:442 87 0-85276 0-159 27
-08
'o‘
06
o
06°°
°60° N
0 ©
o
o ° ~0-4
1/n
01 00s
T t L f T
10 12 20 25 35

Figure 2. Ratios of the magnetisation series for

=3 plotted against 1/n.
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Figure 3. Ratios of the magnetisation series for u = %, plotted against 1/n.

Baker (1968) looked at the first 13 ratios (for T =0-5T,) and considered that they
indicated a singularity at u = 2.

It will be seen that as more and more terms are considered the curve steepens (g
increases) and the intercept moves closer to 1.

The limiting gradient in figure 2 corresponds to g =6, implying a singularity
(us—u)’ in the magnetisation. This is a much weaker singularity than is generally
assumed for a spinodal curve, recalling that we require g <2 if the susceptibility is to
diverge.

The large gradient in figure 2 is our main reason for rejecting the possibility of a
spinodal curve and moving on to analyse the singularity in terms of the more compli-
cated forms predicted by the droplet model.

Figure 3 shows the ratio plot for u =15. The change in slope is steady rather than
being particularly striking, but the limiting graident g =26 again lies outside possible
values for the conventional form of spinodal curve.

In addition to the limiting slopes in the ratio plots being outside the range expected
for the singularities of a spinodal curve, the curvature of the lines also indicates a
departure from the simple algebraic form of the singularity.

Since the ratio plot has 1/ as the ordinate, the larger number of terms implies
considerable changes in the spacing of the points so that visual comparisons become
unreliable. What we have done is to take sets of m consecutive ratios r,.1 to 7., and
used a least-squares fit to calculate gradients. Because of the irregularities in the series
we need to take m =6 before we find the gradient estimates behaving in a smooth
manner, but once we use sufficient points we find that between n = 10 and n = 30 the
gradient changes by 50% for u =15 and by 100% for u =33. In order to assess the
significance of these changes we have applied the same analysis to the high-temperature
susceptibility of the honeycomb Ising model for which 32 terms are known (Sykes et al
1972). This is one of the few series in which (i) the length is comparable with our
high-field series, (ii) the physical singularity is dominant, and (iii) there is a significant
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amount of irregularity in the ratios, arising from various non-physical singularities. The
susceptibility series requires large numbers of points to be fitted before regular gradient
estimates are obtained, and shows none of the regular change in gradient estimates that
appears in the high-field ratio analysis.

Since many aspects of the ratio analysis point towards a singularity that is more
complicated than the power-law singularity expected at a spinodal, we move on to
analyse the singularity in terms of the droplet model. We take the logarithms of the
ratios (see table 3), which should behave as

Inr,=Inx—g/n—on’ ‘Ina. (4.4)

While we still have, formally, four unknown parameters, since we need to analyse
the series in a manner compatible with Domb’s predictions, the problems are
fortunately reduced by using our prior knowledge of some of the properties of the
function:

(i) The g/n term in (4.4) is the term that gives the crossover to power-law
behaviour at the critical point. For low temperatures this term can be ignored as being a
small correction, while near the critical point we must use the value g = {$ determined
by the known critical exponents. (The fact that g/n is a small correction at low
temperatures simplifies our analysis, which is aimed at determining the type of
singularity, but it would hinder any attempt to determine whether g varies with
temperature.)

(ii) The low-temperature value o =5 (based on compact droplets) is very close to
the critical value o = 15 (obtained from known critical exponents), and the ratio analysis
does not depend very greatly on which value of o is assumed. Again this lack of
sensitivity helps our analysis, but would make it difficult to determine the temperature
dependence of o.

For each of the series we plotted In r,, and In 7, +18, against n” “ (i.e. n Hfora=3
and a = 15 (see figures 4 and 5). For the appropriate choice of «, equation (4.4) predicts
that the plots shall be straight lines.

For u =734 (figure 4) we have the following results:

(i) All of the plots are straight in the sense that the curvature is small compared
with the size of the oscillations in the series and thus cannot be detected.

(ii) This means that g/n is indeed a small correction as is expected for low
temperatures, and that the analysis cannot give an accurate estimate of the value of &
unless additional assumptions are made.

(iii) The straight-line extrapolations give H;=0-0+0:04 (of course H,>0 is pre-
cluded by the Yang-Lee theorem).

For u =15 (figure 5):

(i) The plots without the g/n correction extrapolate to values H, >0 which are not
allowed. This indicates that we are in the crossover region in that o lna in (4.4) is
tending to zero.

(ii) The Inr, +g/n plots extrapolate to H,=-—0-01 (using a =1%) or H,~—0-03
(using a = .

5. Conclusions

The conclusions that we draw from the analysis are as follows:
(i) The singularities are too weak to be associated with a spinodal curve.
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(ii) The series are consistent with an infinitely differentiable singularity of the type
predicted by the droplet model. As is always the case in series analysis, we can never
preclude the possiblity that the singularity has a form that is different from and more
complicated than the one we have considered. We have analysed a four-parameter
expression of considerable generality. Since we are dealing with a particularly weak
singularity, we feel that looking at more general forms is not likely to be fruitful.

(iif) We find no convincing evidence of any displacement of the line of singularities
away from H =0. Our analysis indicates that any displacement would have to be
slightly smaller than predicted by Domb’s calculation but, since that calculation was
only to leading order, we cannot regard the discrepancy as significant.

(iv) Atu=15(T/T.=0-76555...) the behaviour of the coefficients is beginning to
show a crossover to the power-law behaviour characterising the critical isotherm. The
observation of this crossover confirms the necessity of analysing the series in terms of
the relatively complicated form (3.1) and of using the ratio method so that the crossover
can be incorporated in the framework of the analysis.

(v) While we feel that the most plausible interpretation of our results is that there is
aline of infinitely differentiable singularities at H = 0(T < T) for the square lattice Ising
model, there are a number of reasons for suggesting that the behaviour might be
different in three dimensions. Firstly, Gaunt and Baker (1970) found that their
apparent spinodal was well separated from the first-order transition line. Secondly, the
droplet model leads to the prediction o =15 in three dimensions which, as pointed out
by Fisher (1967), corresponds to a droplet surface-to-volume ratio which is geometric-
ally impossible. On the other hand, Baker and Kim (1980) found that series expansions
about H = 0 appeared to be divergent in three dimensions as in two. Unfortunately our
series expansion techniques cannot be readily extended to three-dimensional systems.

Acknowledgments

The authors wish to thank Professor C Domb for bringing to their attention the problem
of the nature of the singularity, and also wish to thank G A Baker, D Kim and W Klein
for supplying preprints of their work and for helpful discussions.

References

Baker G A 1968 J. Appl. Phys. 39 616-8

Baker G A and Kim D 1980 J. Phys. A: Math. Gen. 13 L103-6

Baxter R J 1976 J. Stat. Phys. 15 485-503

Baxter R J and Enting I G 1979 J. Stat. Phys. 21 103-123

Borosch I and Fraenkel A S 1966 Math. Comput. 20 107-12

Domb C 1971 in Statistical Mechanics at the turn of the Decade ed. E G D Cohen
——1976 J. Phys. A: Math. Gen. 9 283-99

Essam J W and Fisher M E 1963 J. Chem. Phys. 38 102-12

Fisher M E 1967 Physica 3 255-83

Gaunt D S and Baker G A 1970 Phys. Rev. B1 1184-210

Klein W 1980 Preprint

Klein W, Wallace D J and Zia R K P 1976 Phys. Rev. Lett. 37 639

Knuth D E 1969 Seminumerical Algorithms (Reading; MA: Addison-Wesley) p 302
Sykes M F, Gaunt D S, Roberts P D and Wyles J A 1972 J. Phys. A: Gen. Phys. 5 624-39



