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2600. Australia 

Received 26 July 1979, in final form 16 April 1980 

Abstract. We have used high-field series expansions for the square lattice Ising model to 
investigate the physical singularity in the magnetisation as a function of the field. High-field 
series were obtained to order 35 at temperatures T == 0.5 T, and T == 0.7661; using series 
expansion techniques based on corner transfer matrices. At neither temperature is there 
any evidence of a spinodal line: the behaviour is consistent with the predictions of the 
droplet model, suggesting that the first-order transition line is a line of infinitely differenti- 
able singularities. 

1. Introduction 

For many years there has been considerable interest in the question of whether the line 
of first-order transitions in a liquid-gas system corresponds to a line of singularities or 
whether the properties of one phase can be analytically continued into the two-phase 
region. Such an analytic continuation could possibly be regarded as representing a 
metastable state. The present study, like most of the previous investigations, is 
concerned with the Ising model which can be regarded as a ‘lattice gas’ model of 
liquid-gas transitions. The advantages of working with the Ising model are as follows: 

(i) It is more tractable than more realistic models. 
(ii) The location of the first-order transition line is known. 

(iii) Only one phase need be considered because of the symmetry between ‘liquid’ 
and ‘gas’ phases. 
Domb (1976) has reviewed the various attempts to study the analytic behaviour of the 
phase boundary in lattice gas models. Some of the main points are as follows: 

(i) Approximate solutions such as the mean-field approximation can be analytic- 
ally continued into the two-phase region. The continuation is terminated by a spinodal 
line along which the susceptibility (using ‘magnetic’ terminology) diverges. 

(ii) Essam and Fisher (1963) and Fisher (1967) constructed an approximate 
‘mimic’ partition function for which the line of first-order transitions is a line of 
singularities. 

(iii) Baker (1968) and Gaunt and Baker (1970) have used exact series expansions to 
search for singular behaviour along the phase boundary. They did not find any 
indication of singularities on the phase boundary, but they did find an apparent line of 
singularities inside the two-phase region, as would be expected if properties (i) applied. 
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(iv) Domb (1976) has undertaken a detailed analysis of the configurations contri- 
buting to the partition function. He  suggested that at low temperatures there should be 
a line of essential singularities in the two-phase region, while at higher temperatures 
there should be a spinodal line (see figure 1). 

More recent work using the renormalisation group (Klein et a1 1976, Klein 1980) 
has indicated the existence of a line of essential singularities so that the magnetisation 
cannot be analytically continued through H = 0. The two treatments differ, however, in 
their predictions about the possiblity of analytically continuing M ( H )  by going around 
H = 0 in the complex H plane. A continuation around H = 0 to negative real H could 
still be associated with a metastable state (Klein 1980, Fisher 1967). 

The present study is based on high-field expansions for the square lattice Ising 
model: we expand about p = exp(-2H/kT) = 0, looking for a singularity at ps 3 1. The 
coefficients in the series can be determined exactly, using an algebraic technique which 
we have described previously in connection with low-temperature series (Baxter and 
Enting 1979). These low-temperature series have been used by Baker and Kim (1980) 
to expand the magnetisation about H = O  so that a line of singularities would be 
indicated by a zero radius of convergence. While this latter approach is more direct, it 
suffers from the disadvantage that the coefficients of the powers of H are not known 
exactly but are obtained by extrapolating our 23-term low-temperature series. 

We conclude that the high-field series are consistent with the predictions of the 
droplet model rather than indicating the existence of a spinodal. 

Section 2 gives some of the relevant technical details concerning the derivation of 
the series. Section 3 describes the framework within which the series analysis is carried 
out, showing how the series can be used to distinguish between the different possible 
types of singularity. Section 4 lists the actual results of these tests, and 8 5 indicates the 
reasons that lead us to interpret these results as arising from a line of infinitely 
differentiable singularities. 

2. Series expansions 

The Ising model on the square lattice has a series expansion 
function, given by 

for Z, the partition 

(2.1) 

where U = exp(-4J/kT), p = exp(-2H/kT). The e,,, are integers and are non-zero 
only when m/2 zz n zz m 14. This means that series (2.1) can be grouped either as a 
series in U (with coefficients which are polynomials in p )  or as a series in p (with 
coefficients which are polynomials in U ) .  

Baxter and Enting (1979) obtained the U series to order u Z 3  by using an algebraic 
technique based on the corner transfer matrix formalism of Baxter (1976). The reduced 
partition function K is obtained from a set of equations irivolving infinite matrices. If an 
appropriate basis is chosen, then series expansions can be obtained by truncating the 
matrices at finite size. The technique can also be applied to the p series. Matrices of 
dimension 13 x 13 are sufficient to give K through to p39.  

2 

The details of the calculation have been changed in several respects: 
(i) The equations used by Baxter and Enting involved several products of three or 

more matrices. In the present calculation additional matrices have been defined so that 
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all products involve only pairs of matrices. In other words, quantities which appeared as 
temporary intermediate variables in the original formalism are now preserved rather 
than being recalculated at each stage. 

(ii) We work with the temperature fixed (i.e.. U is fixed). This means that all 
calculations involve only series in a single variable. In general, the coefficients 
occurring in the series for each matrix element would be ratios of polynomials in U, but 
fixing U reduces the coefficients to rational fractions alb.  The fractions are further 
simplified by mapping them onto the field of integers modulo p ( p  prime) via the 
mapping 

U + a ”  

b + b: 
a l b  + (a) = a“ 0 (6-l) 

where g-’ is defined by (g-’) 0 g= 1. 
If bounds are available for numerators and denominators of fractions, then the 

fractions a lb  can be reconstructed from their representatives (z) so long as the 
calculation has been performed for a sufficient number of different primes p. In the 
series for K ,  bounds for the denominators are known because the coefficients are 
polynomials in U with known degree and integer coefficients. 

We have considered the cases of U =&(T/Tc=0.49988. .  .) and U = 
&(TITc = 0.76555 . . .). For a fixed U, the series for K becomes 

(2 = x mod p ) ,  

(2 0 y” = x”x y” modp), 

(2.2) 

where the coefficients a,(u) are integers. The coefficients a,(&) and a,(&) are listed in 
tables 1 and 2 for n s 35. Strictly speaking the coefficients are only correct modulo p, 
where p = 11;’ pi, p1 = 217-99 and the pi are consecutive primes. The U = i~ cal- 
culation used 19 primes and the U =& calculation used 14. Because of the regular 
behaviour of the series, we do not believe that any additive multiples of p occur. 

The procedure of mapping fractions on to integers was described by Borosch and 
Frankael (1966). The inverses (i-’) can be calculated by a modification of Euclid’s 
algorithm for the greatest common divisor (Knuth 1969) or less efficiently by using 
Fermat’s theorem u p  = a  (mod p ) ,  whence (a“- ’ )  = mod p if a f 0 (mod p ) .  

3. Possible lines of singularities 

Domb (1971) has pointed out that any asymptotic analysis of series coefficients must be 
based on some assumptions about the possible singularities. For example, most analysis 
in the theory of critical phenomena is based on the assumption of dominant power-law 
singularities. In investigating the high-field series we must consider a wider class of 
singularities. Since widening the class of possible singularities is essentially equivalent 
to increasing the number of unknown parameters to be estimated, we will only consider 
the possible forms mentioned by Domb (1976). 

Essam and Fisher (1963) and Fisher (1967) used the droplet model to construct a 
‘mimic’ partition function that had a line of singularities at p = 1. 

Baker (1968) and Gaunt and Baker (1970) have used exact series expansions to 
search for singularities on the phase boundary, They did not find such a singularity, but 
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Table 2. Series for the partition function coefficients a,(u), n = 0-35, U = &. 

1 
1 
18 
468 
212 40 
943 065 
530 274 78 
285 407 937 0 
176 577 539 967 
109 467 984 956 22 
710 975 088 361 098 
475 429 473 995 908 86 
326 482 311 261 486 079 8 
226 988 834 198 112 518 508 
162 134 134 442 239 662 161 46 
117 116 411 483 659 519 404 880 2 
858 316 981 818 542 855 598 251 01 
636 877 319 795 551 113 093 358 732 8 
478 383 956 096 199 316 560 660 935 970 
362 452 519 183 833 873 010 847 241 751 50 
277 420 547 030 596 087 390 344 968 516 238 6 
213 955 890 010 279 572 544 957 749 948 234 057 
166 395 425 217 420 635 209 957 476 466 504 077 66 
130 271 926 217 291 999 840 804 816 785 022 589 538 8 
102 678 232 464 874 843 783 160 781 682 017 501 729 111 
814 113 027 410 309 599 749 493 330 521 577 728 495 321 3 
649 277 221 355 085 372 194 984 857 165 111 156 183 886 382 
520 511 707 272 744 435 476 159 975 876 150 425 049 567 437 32 
419 380 673 443 845 557 884 098 086 071 806 713 302 852 876 140 0 
339 456 599 522 982 436 045 451 376 806 765 999 800 927 449 667 758 
275 995 655 105 893 439 856 110 896 032 944 953 845 624 735 050 384 46 
225 314 949 357 845 101 023 404 887 000 272 598 627 626 535 150 921 339 8 
184 673 878 155 672 274 624 400 925 613 419 326 995 634 930 903 896 379 235 
151 919 891 991 593 351 053 546 661 951 439 058 237 876 765 149 762 583 309 47 
125 419 256 276 075 067 754 182 694 053 661 903 383 096 868 530 604 017 592 293 0 
103 887 485 103 041 752 829 746 120 481 699 637 528 029 219 799 764 794 705 889 226 

they did locate what seemed to be a spinodal curve. They assumed that this curve 
obeyed the scaling equation 

7s = -0,(l - T/ TJAS, T = (1 - /~ ) / (1  +/A), A,=?, 
and estimated 0, = 0.39 f 0.20. Lines B and B’ on figure 1 show the scaling curve for 
0, = 0.19 and 0.59 respectively. 

Domb (1976) suggested a more complicated behaviour in which the spinodal curve 
existed only for larger temperatures, while for very low temperatures there would be a 
line of essential singularities beyond the first-order transition line /A = 1. Line A on 
figure 1 shows the limiting (small U )  behaviour of the line predicted by Domb: 

This suggestion of Domb’s involves representing the asymptotic behaviour of the 
series coefficients in terms of four unknown parameters, as indicated below. 
Fortunately this parametrisation turns out to be sufficiently general to include all the 
other cases that we wish to consider. 

p, = (1 - U)-’. 
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I 

Figure 1. Conjectured lines of singularities in the U-@ plane of the square lattice Ising 
model. Line A is a line of essential singularities. Lines B and B' are based on Gaunt and 
Baker's estimates of the asymptotic behaviour of the apparent spinodal. The two lines 
define the range of possible positions given by their estimates. 

We analyse the series in terms of the asymptotic form 

6 ,  - x " / ( a n u n g ) ,  

with 

M ( p  ) = 1 - 2 C bnp 
n 

Of the four free parameters, x,  a, U and g, x determines the location of the singularity, U 

varies only slightly, the possible values all being near 3, and g oiily becomes important 
near the critical point. The particular parameter values for the various possibilities 
described above and sketched in figure 1 are as follows: 

(i) Droplet model (Essam and Fisher 1963): 

x = I 

a > 1, 0 < U < 1 if T < T, (essential singularity), 

a + 1 as T + T, (crossover to known critical behaviour), 

(singularity at p = l), 

8 16 
U = U, g = n near T, (so as to reproduce the known critical exponents). 

(ii) Spinodals ( T  < Tc): 

x < 1 

(a = 1 or U = 0) (no essential singularity), 

g < 2 

(singularity at p > l), 

(if susceptibility diverges). 

(iii) Displaced essential singularity with intersecting spinodal (Domb 1976): 

x < 1 (singularity at p < l ) ,  
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(+ = 3 (for small U, compact clusters dominate), 

a + 1 as T + T i  (crossover to spinodal) 

1 
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4. Series analysis 

As mentioned above, the modified droplet model proposed by Domb involves four 
unknown parameters. Even with the long series given in the tables we are not in a 
position to make direct estimates of these parameters. 

Our main result is that the series seem to be inconsistent with the existence of a 
spinodal line. From the previous section it will be seen that a spinodal line places most 
restrictions on the possible values of the parameters. The 'spinodal' prediction is 
sufficiently precise for us to be able to test it directly and, as a result of the tests, to reject 
it as a possiblity. The remaining possibilities that have been proposed are lines of 
infinitely differentiable singularities. We find that our series are consistent with this 
type of behaviour with the singularity being nea:p = 1. Obviously no series analysis 
can ever show that the singularity is exactly at p = 1 (the droplet model) rather than at p 
slightly greater than 1 (as suggested by Domb). 

Our analysis is based on various forms of the ratio method. The reasons for using 
the ratio method to the exclusion of other techniques such as Pad6 approximants are as 
follows: 

(i) The predictions of the droplet model are given most directly in terms of the 
series coefficients, and the ratio method works directly with the series coefficients. 

(ii) The use of Pad6 approximants requires us to transform our function into some 
related function which has, at least to a first approximation, a simple pole at the physical 
singularity. (For power-law singularities the logarithmic derivative of the thermo- 
dynamic function is used.) Without some knowledge of the type of singularity it is not 
possible to make an appropriate choice for the transformation. 

(iii) While Pad6 approximants sometimes display a characteristic pattern of poles 
and zeros around points which cannot be represented exactly by the approximants, the 
interpretation of these patterns is, in general, very much a subjective business. Pade 
analysis of the high-field Ising series has so far proved unfruitful (D Kim, private 
communication), but it might be hoped that experience with Pad6 approximants to the 
Ising model series might ultimately be a guide to the interpretation of Pad6 analysis at 
other first-order transitions. 

We begin by taking the predictions of the (modified) droplet model for the 
coefficients 

b, -x"/(a""n') .  (4.1) 

The ratios of these coefficients are (see table 3) 

(4.2) 

(The spinodal would correspond to a" = 1 or r, = x(1- g / n ) . )  The ratios are plotted 
against l / n  in figures 2 and 3. The gradient of the ratio plot is predicted to behave as 

-r,n-l 
r, = b , l b , , - l - x ( l - g / n ) a  

(For a" = 1 this reduces to -gx. )  
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Table 3. Ratio method analysis of magnetisation series. 

1 U = &  U =m 

n r,, = b,/b,-, -lnr,, r,, = b,/b,-l -In r, 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

0.448 96 
0.397 56 
0,407 88 
0.463 20 
0.476 66 
0,443 65 
0,513 23 
0,506 57 
0,507 76 
0,520 57 
0.546 48 
0.541 57 
0.556 61 
0,554 36 
0.576 22 
0.577 85 
0.583 93 
0.588 23 
0,597 78 
0.604 63 
0.609 48 
0.612 53 
0.620 36 
0.622 98 
0.630 84 
0.633 74 
0,638 06 
0.642 19 

0.800 82 
0.922 41 
0.896 77 
0.769 59 
0.740 96 
0.812 72 
0.667 02 
0.680 10 
0.677 76 
0.652 83 
0.604 25 
0.613 27 
0.585 90 
0.589 93 
0.551 27 
0,548 44 
0.537 97 
0.530 63 
0.514 52 
0,503 13 
0.495 15 
0.490 16 
0.477 46 
0.473 24 
0.460 70 
0.456 11 
0.449 33 
0.442 87 

0,708 96 
0.697 71 
0,722 33 
0.736 14 
0.749 66 
0.753 52 
0.769 72 
0.774 24 
0.782 04 
0.788 66 
0.795 60 
0.799 97 
0,805 91 
0,809 98 
0,814 93 
0.818 66 
0,822 61 
0.826 06 
0.829 57 
0.832 24 
0.835 55 
0.838 44 
0.841 19 
0.843 68 
0.846 16 
0.848 44 
0,850 66 
0,852 76 

0.343 95 
0.359 95 
0,325 27 
0.306 33 
0.288 14 
0.283 00 
0.261 73 
0,255 88 
0.245 85 
0.237 42 
0.228 26 
0.223 18 
0.251 79 
0.210 74 
0,204 65 
0.200 09 
0.195 27 
0.191 09 
0.186 85 
0.183 15 
0.179 67 
0.176 21 
0.172 93 
0.169 98 
0,167 05 
0.164 36 
0,161 74 
0.159 27 

0 

0 
0 

0 
0 

0 

. .' ..' 1.6 
00 

00 

0 .  - 0  I 

1 /n 
0 1  0 05 
I I 

I I I l l  I I 

8 10 1 2  20 25 35 
n 

Figure 2. Ratios of the magnetisation series for U =&, plotted against l / n .  
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Figure 3. Ratios of the magnetisation series for U = &, plotted against l /n.  

Baker (1968) looked at the first 13 ratios (for T = 0.5Tc) and considered that they 
indicated a singularity at p = 2. 

It will be seen that as more and more terms are considered the curve steepens (g 
increases) and the intercept moves closer to 1. 

The limiting gradient in figure 2 corresponds to g = 6, implying a singularity 
(pLS-p)’ in the magnetisation. This is a much weaker singularity than is generally 
assumed for a spinodal curve, recalling that we require g < 2 if the susceptibility is to 
diverge. 

The large gradient in figure 2 is our main reason for rejecting the possibility of a 
spinodal curve and moving on to analyse the singularity in terms of the more compli- 
cated forms predicted by the droplet model. 

Figure 3 shows the ratio plot for U = &. The change in slope is steady rather than 
being particularly striking, but the limiting graident g = 2.6 again lies outside possible 
values for the conventional form of spinodal curve. 

In addition to the limiting slopes in the ratio plots being outside the range expected 
for the singularities of a spinodal curve, the curvature of the lines also indicates a 
departure from the simple algebraic form of the singularity. 

Since the ratio plot has l / n  as the ordinate, the larger number of terms implies 
considerable changes in the spacing of the points so that visual comparisons become 
unreliable. What we have done is to take sets of m consecutive ratios r,+l to r,+,,, and 
used a least-squares fit to calculate gradients. Because of the irregularities in the series 
we need to take m 3 6  before we find the gradient estimates behaving in a smooth 
manner, but once we use sufficient points we find that between n = 10 and n = 30 the 
gradient changes by 50% for U = and by 100% for U = &. In order to assess the 
significance of these changes we have applied the same analysis to the high-temperature 
susceptibility of the honeycomb Ising model for which 32 terms are known (Sykes et a1 
1972). This is one of the few series in which (i) the length is comparable with our 
high-field series, (ii) the physical singularity is dominant, and (iii) there is a significant 
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amount of irregularity in the ratios, arising from various non-physical singularities. The 
susceptibility series requires large numbers of points to be fitted before regular gradient 
estimates are obtained, and shows none of the regular change in gradient estimates that 
appears in the high-field ratio analysis. 

Since many aspects of the ratio analysis point towards a singularity that is more 
complicated than the power-law singularity expected at a spinodal, we move on to 
analyse the singularity in terms of the droplet model. We take the logarithms of the 
ratios (see table 3), which should behave as 

In a. In r,, = In x - g / n  - u n  (4.4) 

While we still have, formally, four unknown parameters, since we need to analyse 
the series in a manner compatible with Domb's predictions, the problems are 
fortunately reduced by using our prior knowledge of some of the properties of the 
function: 

(i) The g / n  term in (4.4) is the term that gives the crossover to power-law 
behaviour at the critical point. For low temperatures this term can be ignored as being a 
small correction, while near the critical point we must use the value g = determined 
by the known critical exponents. (The fact that g / n  is a small correction at low 
temperatures simplifies our analysis, which is aimed at determining the type of 
singularity, but it would hinder any attempt to determine whether g varies with 
temperature.) 

(ii) The low-temperature value U = t (based on compact droplets) is very close to 
the critical value U = & (obtained from known critical exponents), and the ratio analysis 
does not depend very gxeatly on which value of U is assumed. Again this lack of 
sensitivity helps our analysis, but would make it difficult to determine the temperature 
dependence of U. 

For each of the series we plotted In r,, and In r,, + g n  against n 7  (i.e. nu-')  for a = 5 
and a = & (see figures 4 and 5 ) .  For the appropriate choice of a, equation (4.4) predicts 
that the plots shall be straight lines. 

1 

For U = (figure 4) we have the following results: 
(i) All of the plots are straight in the sense that the curvature is small compared 

with the size of the oscillations in the series and thus cannot be detected. 
(ii) This means that g / n  is indeed a small correction as is expected for low 

temperatures, and that the analysis cannot give an accurate estimate of the value of U 

unless additional assumptions are made. 
(iii) The straight-line extrapolations give H, = 0.0 f 0.04 (of course H, > 0 is pre- 

cluded by the Yang-Lee theorem). 
For U = & (figure 5 ) :  

(i) The plots without the g / n  correction extrapolate to values H, > 0 which are not 
allowed. This indicates that we are in the crossover region in that U In a in (4.4) is 
tending to zero. 

(ii) The In r,, + g / n  plots extrapolate to H,- -0.01 (using a = &) or H, - -0-03 
(using a = 2). 

1 

5. Conclusions 

The conclusions that we draw from the analysis are as follows: 
(i) The singularities are too weak to be associated with a spinodal curve. 
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n - ” 1 5 ;  C, In r, + E n  against n-’”; D, In r, + e n  against L~’”. 

,-0 1 

D O  r 0 0  
L 

0 0  
0 0  

0 0  
0 0  

0 0  
0 0  

0 0  

0 0  

B A  

n - *  

Figure 5. Plot of logarithms of ratios against n? for U = &: A, In r,against n-”’; B, In r, 
against n - 7 / ’ 5 ;  C, In r, ++$n against E-”’ ;  D, In r, + E n  against n-7/15.  
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(ii) The series are consistent with an infinitely differentiable singularity of the type 
predicted by the droplet model. As is always the case in series analysis, we can never 
preclude the possiblity that the singularity has a form that is different from and more 
complicated than the one we have considered. We have analysed a four-parameter 
expression of considerable generality. Since we are dealing with a particularly weak 
singularity, we feel that looking at more general forms is not likely to be fruitful. 

(iii) We find no convincing evidence of any displacement of the line of singularities 
away from H = 0. Our analysis indicates that any displacement would have to be 
slightly smaller than predicted by Domb’s calculation but, since that calculation was 
only to leading order, we cannot regard the discrepancy as significant. 

(iv) At U = &( T/ T, = 0.76555 . , .) the behaviour of the coefficients is beginning to 
show a crossover to the power-law behaviour characterising the critical isotherm. The 
observation of this crossover confirms the necessity of analysing the series in terms of 
the relatively complicated form (3.1) and of using the ratio method so that the crossover 
can be incorporated in the framework of the analysis. 

(v) While we feel that the most plausible interpretation of our results is that there is 
a line of infinitely differentiable singularities at H = O( T < Tc) for the square lattice Ising 
model, there are a number of reasons for suggesting that the behaviour might be 
different in three dimensions. Firstly, Gaunt and Baker (1970) found that their 
apparent spinodal was well separated from the first-order transition line. Secondly, the 
droplet model leads to the prediction U = 6 in three dimensions which, as pointed out 
by Fisher (1967), corresponds to a droplet surface-to-volume ratio which is geometric- 
ally impossible. On the other hand, Baker and Kim (1980) found that series expansions 
about H = 0 appeared to be divergent in three dimensions as in two. Unfortunately our 
series expansion techniques cannot be readily extended to three-dimensional systems. 
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